
Measuring the Radius of the Earth 
Updated May 25, 2009 
 
Requirements: 

- A collaborator who can perform the same experiment in a city at least 250 km 
north or south of you.  Livingstone and Lusaka are just barely far enough apart, as 
are Lusaka and Ndola.  The measurement is more precise however if you can 
work with someone further away, such as in Kenya or South Africa.  (A physics 
or maths class in a distant city would make a perfect collaborator!) 

- Broomstick or other relatively straight rod or pole at least 50cm long.  If you use a 
rod which is shorter than a broom handle, then it should be thinner in diameter 
than a broom handle as well. 

- Thread or string 
- Sticky tape 
- 2 bolts, small stones, or other small weights (for plumb bobs) 
- Ruler 
- 2 matchsticks 
- Clock 
- Calculator with arctangent function (sometimes written “atan”, “ 1tan− ”, or 

“arctan”) 
- Globe, if available.  If not, you could use a ball or round piece of fruit with the 

shapes of the continents drawn on. 
- A lamp with no shade so light comes out in all directions, i.e. a bare light bulb. 
- Relatively dark room, dark enough that you can see the shadows cast by the lamp.  

You could try covering the windows of your classroom. 
- Spirit level.  If you don’t have one, a wide flat-bottomed cooking pan with water 

can be used instead (see Figure 1.) 
- Another activity to do from 11am-1pm between measurements 

 
If the students are not familiar with the tangent function in trigonometry, then you will 
also need: 

- Protractor 
- Big flat rectangular object on which you can make pencil marks.  The object must 

have very straight sides and a sharp o90  angle at the corner.  If you use apparatus 
1 (described below), it needs to be at least 40 cm or so square, so a large piece of 
paper would work.  If you use apparatus 2, it needs to be as long as the 
broomstick, and so the surface of a table or desk might work. 

- Another object with a straight edge, such as a metre stick. 
 
Suitable for: groups from 3-30. 
 
Time required: Sections II-VII, which give the background for the experiment, will take 
roughly 2 to 3 hours.  The measurement itself needs to happen from 11am-1pm, but setup 
should begin 15-30 minutes before 11am.  Plotting, analysis, and discussion will take 
another hour.   



 
Important note: The measurement can only be performed on a sunny day, so be 
prepared with another activity in case the sky becomes cloudy.   
 
Topics discussed:  the solar system, the orbit of the earth around the sun, seasons, 
propagation of light, optics, shadows, angles, length of a circular arc, alternate angles, 
tabulating data, graphing data.  If students are already familiar with the tangent function 
or radian measure, these topics can be used in the lesson as well. 

I. Apparatus 
We have tried two different configurations for measuring the angle of the sun; both are 
pictured below.  It is recommended that you try building and using both configurations 
on your own before running the activity with students.  This will give you a chance to see 
which apparatus is more precise and accurate for the materials you have available. 
 
Your collaborator in the other city must build one of these two configurations as well. 
 
For both configurations, the goal is to set up a perfectly vertical object of known height h, 
and measure the length w of the shadow it casts on a horizontal surface.  It is crucial that 
the surface used for measuring the shadow be perfectly horizontal.  You can use a spirit 
level to check this.  If you do not have a spirit level, you can make one with a wide flat-
bottomed cooking pan: place a small amount of water in the pan, and observe whether or 
not the water covers the bottom evenly: 

 
 
Apparatus 1: 
In this configuration, the vertical object is a “plumb bob”, meaning a string with a small 
weight attached at the bottom.  A bolt, nut, or small stone works well for the weight.  The 
string should hang freely, with the weight just barely above the ground, but not touching 
the ground.  Also tie on two small “cross-pieces” of string, one at each of two locations: 
one just above the weight and the other at least 30cm above the weight.  The height h is 
then the vertical distance between these two cross-pieces. 
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You will need to see the shadows of both crosses on the paper: 

 
If the shadow of the lower intersection is obscured by the shadow of the weight, then 
either use a smaller weight or raise the lower cross piece.  If the shadow of the upper 
intersection is too faint to see, then either lower the top cross piece or use thicker string.  
To measure the horizontal length w of the shadow, mark the paper at the location of both 
intersections.  The shadow of the upper intersection will be wide and blurry; try to mark 
its middle.  The distance between the two marks can then be measured with a ruler. 
 
The bob must not be blown around by the wind.  I therefore found it useful to build the 
apparatus indoors near a window.  For times of year when the sun is directly overhead at 
noon (e.g. January in Zambia), it can be hard to find an indoor location with direct 
sunlight; in this case you will need to work outdoors. 
 
Apparatus 2: 
In this alternative configuration, the vertical object is a broomstick or other solid pole.  A 
piece of paper is placed on a smooth horizontal surface under the bottom of the pole.  The 
pole is attached by string to four chairs, as shown here: 
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The pole must be exactly vertical; even a slight misalignment will cause large errors in 
the value we will calculate for the earth radius.  To ensure that the pole is vertical, hang 
two plumb bobs off the sides of the pole: 

 
Adjust the chairs and the pole so that both plumb bobs are aligned with the bottom of the 
rod.  It is not a problem if the pole has a slight bend to it, as long as the bobs hang right 
next to the bottom of the rod: 

Figure 5: Top view of pole 
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To measure the length of the shadow w with apparatus 2, first note that the shadow cast 
by the top of the pole will have a gradual round edge and a larger diameter than the pole 
itself, as shown in the figure below.  Draw a circle of the same radius as the pole, such 
that the centre of the new circle is the same as the centre of the circular part of the 
shadow.  The value of w you should record is then the distance between the edge of the 
pole to the corresponding edge of your new circle, as shown in the figure below.  (This 
distance is the same as the distance from the centre of the pole to the centre of the new 
circle.) 

 
 
Apparatus 1 has the advantage that you do not need to align anything vertically – gravity 
automatically keeps the plumb line vertical in this configuration.  Apparatus 2 however 
has the advantage that it is less sensitive to wind.  Depending on your materials and 
location, one apparatus may be preferable to the other. 

II. Introduction 
When the students arrive for the lesson, 

• announce that we will be measuring the radius of the earth using shadows.  We 
will do the experiment together with a collaborator in another city.   

Figure 6: Side view of pole. (Hopefully your pole is less crooked than the one pictured here!) 
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Figure 7: Measuring w with Apparatus 2 
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• Briefly show the students the apparatus.  Explain that the length of the shadow 
cast by the vertical object will tell us something about our orientation relative to 
the earth and the sun, and that the length of the shadow will be different in 
different cities.   

• Explain that this same experiment was conducted by a man named Eratosthenes 
around the year 240 B.C. using two cities in Egypt: Aswan and Alexandria. 

• Explain that this experiment is remarkable: it shows how a clever measurement 
can be combined with mathematics to prove something about the world which is 
much bigger than human scale.  You could never measure the radius of the earth 
directly with a ruler, but we can do so using some clever maths. 

• To understand exactly how the length of a shadow depends on which city you are 
in, we first need to understand the seasons and the motion of the Earth around the 
Sun. 

III. Day and night 
Show the following demo: 

 
If a globe is not available, you could substitute a ball, perhaps with the continents drawn 
on it.  If the room is dark enough and if the lamp is bright enough, you should be able to 
tell that the half of the globe facing the lamp is illuminated, whereas the half of the globe 
facing away from the lamp is dark 
 
Have a volunteer hold the globe.  Ask the volunteer: “How does the Earth move in one 
day?”  The volunteer should rotate the globe one complete revolution, as shown here: 

 
Make sure the North Pole of the globe is more or less pointed up at the ceiling.  If your 
students are particularly clever, you might want to ask them whether the rotation should 
be in the direction shown or rather in the opposite direction.  The way to tell is to use the 
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fact that the Sun appears to rise in the East and set in the West.  If the Earth’s rotation 
was opposite to the direction shown in the figure, then the Sun would appear to rise in the 
West instead.  For most students, however, you can just say that “it turns out that the 
direction of rotation is this way rather than the opposite way.” 
 
Now have the volunteer find your city on the globe.  Ask the volunteer: “Which way is 
the Earth oriented when it is noon here in our city?”  The volunteer should rotate the 
globe so that your city is pointed as directly at the lamp as possible, given that the North 
Pole still must point up towards the ceiling.  For example, if you live in the Southern 
Hemisphere, the arrangement should look like this: 

 
Now ask the volunteer: “Which way is the Earth oriented when it is midnight here in our 
city?”  The volunteer should rotate the globe so that your city is pointed as directly away 
from the lamp as possible, again given that the North Pole must point upwards: 

 
Next ask the volunteer: “Which way is the Earth oriented when it is evening and the Sun 
is setting here in our city?”  The volunteer should rotate the globe so that your city is on 
the boundary of the illuminated and dark regions: 
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Switch volunteers so that other students can try out these last few steps. 

IV. Seasons 
Ask your students:  

“In our model here, should the North Pole point  
A) straight up, or 
B) tilted at an angle?” 

 
Ask if any of the students have an argument for A or B, and allow them to discuss the 
question with their neighbors.  Have your students write down their answers.  Now reveal 
that the correct answer is B.  State that one reason we know the axis is tilted is because it 
explains why there are seasons, as we will see. 
 
Now have a volunteer hold the globe, and ask him or her: “Show me how the Earth 
moves during one year.”  Answer: 
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It is important that the North Pole keep pointing in the same direction during the “orbit”; 
in the figure above, for example, the North Pole is always tilted towards the left, meaning 
it points a bit towards the Sun when the Earth is on the right, and the pole points a bit 
away from the Sun when the Earth is on the left.   
 
The student should spin the globe about the North Pole many times during the orbit, 
though it doesn’t need to be the real 365 times.  Ask the students: “How many times does 
the Earth spin about the North Pole for every time it travels around the Sun?”  Answer: 
about 365 times, since there are about 365 days in a year.  (It’s not exactly 365 though). 
 
Now ask the volunteer: “In which part of the orbit is it summer in Johannesburg?”  
Answer: the part of the orbit for which the North Pole points a bit away from the Sun, 
because then Johannesburg points almost straight at the sun when it is noon there, and so 
it is hot.  Show the class that at the opposite point in the orbit, when the North Pole points 
a bit towards the Sun, that Johannesburg never points very directly towards the Sun, and 
so it is cold there. 
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Now ask the volunteer: “In which part of the orbit is it summer in London?”  Answer: the 
part of the orbit for which the North Pole points a bit towards the Sun, because then 
London points almost straight at the sun when it is noon there, and so it is hot.  Show the 
class that at the opposite point in the orbit, when the North Pole points a bit away from 
the Sun, that London never points very directly towards the Sun, and so it is cold there. 
 
If you want, there is much more information which could be covered at this point, such as 
discussing the Arctic Circle, Tropic of Capricorn and Tropic of Cancer, time zones, 
latitude and longitude, etc. 

V. Shadows 
First ask your class how the length of the shadow of a vertical object will change during 
the day.  Answer: it is long at sunrise, the length decreases until around midday, then the 
length increases until the shadow is quite long around sunset.  Now ask your class how 
the direction of the object’s shadow will change during the day.  Answer: the shadow will 
point west at sunrise and it will move towards the east at sunset.   At noon it may point 
north or south depending on your location and the time of year. 
 
Next, have a volunteer hold both the globe and one of the matchsticks.  Ask the volunteer 
to orient the match on the globe so as to represent an object which appears vertical in 
your city.  Put another way, point the match the way astronauts would see a flagpole at 
your school.  Answer: the matchstick should have one end on your city, and it should 
point away from the center of the globe, as shown here: 
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If the student initially suggests a different orientation, see if any other students in the 
class can place the match correctly, and have each student write down his or her vote on 
which option is correct.  Discuss how an object which appears vertical in your city 
appears sideways when viewing the earth from space.  “Up” just means “opposite the 
direction of gravity,” and gravity pulls towards the centre of the Earth. 
 
Next, use sticky tape to fix the match to the globe in the orientation shown above.  Show 
how the match casts a shadow on the globe.  It may be helpful to bring the globe closer to 
the lamp. 

 
Have a volunteer rotate the globe about the North Pole to represent the Earth’s daily 
rotation.  Point out that just after sunrise (when your city crosses into the illuminated 
region) the match’s shadow is long and it points west.  Just before sunset (when your city 
crosses into the dark region) the match’s shadow is long and it points east.  In between, 
around noon, the shadow length reaches a minimum.  Point out that this is exactly the 
behaviour we described at the start of this section! 
 
Now, attach a second matchstick somewhere else on the globe, at a similar longitude but 
a different latitude to your city (i.e. to the north or to the south of your city.)  
Demonstrate to the class that the shadows observed in the other city (cast by the second 
match) differ in both length and direction to the shadows in your city (cast by the original 
match). 

VI. Geometry 
This next section is fairly mathematical, so it will be suitable for some high school 
students but not for others.  If you feel your students will be confused rather than 
enlightened by this section, you may skip to section VIII, first writing down the 
procedure summarized in section VII without explaining in detail where these steps come 
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from.  For example, you could tell your students “It turns out that if you work through 
some geometry, you can show that the radius of the Earth can be calculated using these 
steps…” 
 
If you decide to proceed with this section, first state that you can think of light as coming 
out of a source in parallel rays, and that shadows appear wherever the rays are blocked by 
the match.  Draw the following figure on the chalkboard: 

 
When the light source is nearby, the rays travel in noticeably different directions.  
However, as the light source gets very far away from the object casting the shadow, then 
the rays become almost parallel.  They are never exactly parallel, but to a good 
approximation we can pretend that they are exactly parallel: 

 
Since the Sun is so far away from us, then it is a good approximation to think of the rays 
from the Sun as being parallel to each other. 
 
Next, suppose it is December 21, so the Earth’s axis of rotation points away from the 
Sun.  Also suppose that our city is far enough north that shadows point north on this day 
of the year: 
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On other days of the year, the picture is more complicated, because when our city points 
towards the sun (i.e. at the time of minimum shadow length), the rotation axis would 
point out of the page or into the page.  Only on the solstices (December 21 and June 21) 
does the rotation axis lie in the same plane, making the geometry much easier.  It takes 
some sophisticated mathematics (differentiation and multiplication of rotation matrices) 
to show that the equations we will find in this section are actually true on any day of the 
year, not just on the solstices.  (The details are given in Appendix A, but they are 
complicated, so don’t worry if you don’t have time to read this appendix.)  For simplicity, 
however, we can just analyze the December 21 situation here. 
 
Next we’ll need to analyze the geometry of the situation.  The figure below is a close-up 
of the previous figure, and I have labeled several of the lengths and angles: 

 
w = minimum length of shadow 
h = height of a vertical object (pole, or distance between cross-strings on plumb bob) 
a = the angle between the sun and your city, with vertex at the centre of the Earth 
b = minimum angle of a shadow at your city 
 
Ask the students the following multiple-choice question: 

A) angle a is bigger than angle b, 
B) a < b 
C) a = b 
D) it depends on which city you are in 
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E) I don’t know 
Have the students discuss which answer is correct, and ask if any student can give a 
reason why their answer is correct.  Then have each student write down his or her answer. 
 
Now reveal the answer: C.  The angles a and b are “alternate interior angles” of parallel 
lines, and there is a theorem of geometry which says that these angles are therefore equal: 
a=b.  If at first you don’t see why a and b are alternate angles, it may help to eliminate 
some of the unrelated elements of the previous figure: 

 
Next, point out that the angle b is hard to measure directly, and it is easier to measure the 
lengths w and h.   

• If students have been taught the trigonometric functions, then ask them “What is 
the relationship between b, h, and w?”  Correct answer: “tan b =w/h”.  We then 
need to change the subject of the equation to b; see if the students know how to do 
this.  Correct answer: “b = arctan(w/h)”.  Sometimes people say “inverse tangent” 
or “ 1tan− ” instead of arctan - they all mean the same thing.  If the students have 
not seen arctan before, many will at least have seen the associated button on a 
scientific calculator. 

• If students have not yet been taught about the tangent function, then just say that 
“There is a function called ‘arctangent’ or “inverse tangent” such that 
b=arctan(w/h)”.  We can also find b by drawing a right triangle with the same 
opposite and adjacent side lengths (i.e. with the same h and w), and then measure 
the angle of the resulting triangle with a protractor (Figure 27). 

 
To make it more clear why tan b =w/h, here I have reproduced the key elements of Figure 
21 with the unrelated parts of the drawing removed: 

 
Now suppose people in the three different cities shown below all measure their shadow 
angle b: 
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So the person in City 1 measures a shadow angle 1b , the person in City 2 measures a 

shadow angle 2b , etc.  Notice that the people in cities 1 and 2 see the shadow point north, 
whereas the person in city 3 sees the shadow point south. 
 
Now, define the angles f and g as follows: 

 
Give your students this multiple-choice question: 
 A) 21 bbf +=  and 32 bbg +=  

 B) 21 bbf −=  and 32 bbg +=  

 C) 21 bbf +=  and 32 bbg −=  

 D) 21 bbf −=  and 32 bbg −=  
 E) I don’t know 
 
Ask if any of the students have an argument to support one of the options.  Allow the 
students to discuss the question with their neighbors.  Have your students write down 
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their answers.  Now reveal that the correct answer is B.  Point out that because the people 
in City 1 and City 2 both saw shadows pointing north, they must subtract the angles b 
they measure to get the angle f between the cities.  In contrast, the people in City 2 and 
City 3 saw shadows pointing opposite directions (one north and one south), and so they 
must add the angles b they measure to get the angle g between the cities. 
 
Now, ask for the equation that relates the angle f, the radius of the Earth Er , and the 

distance d between cities 1 and 2.  Answer: 
o360

2 fr
d Eπ= .  To understand this equation, 

remember that the circumference of the Earth is Erπ2 .  The distance between cities d is a 

fraction 
o360

f
 of this total circumference.  At this point in the lesson, if your students are 

sufficiently advanced, you could talk about radian measure. 
 
Now point out that we could measure d by driving from City 1 to City 2 while observing 
the change in the car’s odometer.  So if we know d and we know f but we want to find out 

Er , what equation could we use?  Answer: change the subject of our last equation to Er :  

f

d
rE π2

360o

=  

 
We now have all the pieces we need to measure the radius of the Earth! 

VII. Recap 1 
Have the students summarize “What are the specific steps we need to take to find the 
radius of the earth?”  “Let us write down instructions for what we will need to do.”  Write 
these steps on the chalkboard and/or on a giant sheet of paper to record them: 

1. Set up a vertical object of known height h. 
2. Measure the length of the shadow of that object around noon 
3. Find the minimum length of the shadow w. 
4. Find the shadow angle b using b = arctan(w/h) and/or by drawing a copy of the 

triangle, measuring the angle using a protractor. 
5. Based on whether we see the shortest shadows pointing north or south, add or 

subtract our angle b to the angle b measured by our collaborator to get the 
difference angle f. 

6. We won’t actually drive between the cities to measure the distance d between 
them, but we could do so in principle. 

7. Apply the formula 
f

d
rE π2

360o

= . 

VIII. Measurement 
This step requires measurements between roughly 11am through 1pm, with a bit of prep 
time to set up the plumb lines.  Note that some countries, such as the US and UK, observe 
“daylight savings time” for part of the year, during which clocks are changed so that the 
sun reaches its highest point around 1pm rather than noon.  If you are taking data in a 



country which is observing daylight savings time, you should therefore record 
measurements between noon and 2pm instead of between 11am-1pm. 
 
Your collaborator in the other city will need to make the same set of measurements as 
you.  It is ideal if your collaborator can take measurements on the same day as you, or 
within a few days of you at most.  If your collaborator makes his or her measurements 
several days before or after you, the motion of the Earth around the Sun during that time 
will introduce an error1.  The error is smaller if you and your collaborator are further 
away from each other.  For cities within 300km, such as Lusaka – Livingstone, the 
measurements should be no more than a couple days apart.  For greater distances, such as 
Lusaka – Nairobi, even a week between the measurements will not introduce much error. 
 
Every 10 minutes or so, have a student measure the shadow length w as described in 
figures 3 and 7.  It is not crucial if the intervals are not exactly 10 minutes long.  It is also 
no problem if you miss a few measurements due to clouds.  Make a table to record the 
data: 

Time Minutes past 11:00am Shadow length w (cm) 
11:02 2 15.0 
11:13 13 12.2 
11:22 22 10.1 
11:34 34 8.4 

… 
Also, around the time that the shadow length seems to be at its shortest, record whether 
the shadow points roughly north or roughly south. 
 
Now graph the data, with “minutes past 11:00” as the x-axis, and “w” as the y-axis.  The 
values of w you record should decrease to a minimum and then increase again.  After the 
last data point is recorded, draw a smooth “best-fit” curve - a curve which is as smooth as 
possible while passing as close as possible to all the data points: 

 
                                                 
1 In the terminology of Appendix A, the angle u changes slightly each day, and if the delay between the two 
measurements is too long, the change in u will grow comparable to the difference in latitudes between the 
two cities which you are trying to measure. 
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You will find that some data points lie slightly above the best-fit curve while other points 
fall below the curve.  Discuss this observation with the class: “Does this occur because 
the sun moves in a jerky manner?  If not, what other factors cause some points to seem 
‘too high’ or ‘too low’?”  Answer: human error and uncertainty in making the 
measurement, small movements of the apparatus due to wind, etc. 
 
Now read the minimum of the best-fit curve.  (For the data in the previous figure, this 
minimum w would be roughly 4.7 cm.)  I will call this number minw . 
 
Next, we will need to convert h and minw  to an angle.  (Remember, h is the distance 
between the cross-strings if you are using apparatus 1, or the height of the pole if you are 
using apparatus 2.)   
 
If the students are not familiar with the tangent function, then draw a right triangle on a 
big flat rectangular object, using the corner of the rectangular object as the right angle, 
and such that the sides of the triangle that touch the right angle have length h and minw : 

 
It is important that the hypotenuse be very straight, so use the edge of a straight object 
such as a metre stick to draw it.  Now measure the angle against side h with a protractor - 
this will give you b. 
 
Next, whether or not the students have seen the arctangent function before, have them 
compute ( )minarctan /w h  using a calculator.  If you drew a copy of the triangle as in 

Figure 27, you should get the same answer.  For the remainder of the calculation, use the 
value of b obtained with a calculator rather than the one measured with the protractor, 
since the former method is more precise than the latter. 
 
At this point we will need the value of b obtained by the collaborator in the other city.  
We also need to know whether the collaborator observed the minimum shadow to point 
north or south. 
 
If both you and collaborator observed shadows pointing north, or if you both observed 
shadows pointing south, then subtract the values of b.  (Subtract the smaller one from the 
larger one so you get a positive answer).  On the other hand, if you observed a shadow 
pointing south while the collaborator observed a shadow pointing north, or vice-versa, 
then add the values of b  you obtained.  Whether you add or subtract, call the resulting 
angle  f. 
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You will now need the distance d between you and your collaborator.  Several values are 
given in Appendix B.  If you are using a pair of cities other than the ones in the appendix, 
you will need to look up the distance d on a map, as shown in the figure below.  
Remember that it is only the north-south component of the distance which matters, since 
any east-west distance between the cities causes the shadow lengths to reach a minimum 
at different times, not different lengths.  The distance d is generally less than the total 
distance between the cities: 

 

Finally, compute 
f

d
rE π2

360o

= .  Compare the result you obtain to the actual Earth radius = 

6370km.  Discuss/brainstorm why our result is slightly different. 

IX. Recap 2 
Ask the students “What were some of the key ideas we learned and used in this lesson?”  
Write the responses on the board. 
 
Emphasize: 

- The model of an Earth spinning on an axis at an angle is very successful.  It 
explains many things, such as why there are seasons and why shadows change 
during the day as they do. 

- A clever measurement can be combined with mathematics to prove something 
about the world which is much bigger than human scale.   

- Ideas from mathematics, such as the tangent function, alternate angles, (and 
radian measure if you discuss it) can be useful for something! 

Appendix A: Relationship between your latitude and the minimum 
shadow angle you measure, for any day of the year 
You do not need to understand the mathematics in this section in order to give the lesson; 
I wrote up this appendix to rigorously analyze how the minimum shadow angle you 
observe will depend on your latitude on days other than the solstices.  This section is 
definitely too advanced for secondary students.  The key finding is that the experiment 
can be done on any day of the year. 
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To analyze the geometry of shadows, I will use two different points of view.  In the first 
system, let us introduce (x, y, z) coordinates, taking the origin to be at the center of the 
Earth, with the z-axis directed towards the sun, and the x-axis pointed along the plane of 
the earth’s orbit: 

 
 

 
Now let me introduce the other point of view: a “sidereal reference frame.”  Here, we 
imagine that we are looking at the solar system from a space ship, which is positioned 
such that neither the Sun nor distant stars appear to move relative to us during the course 
of one Earth-year, and rotated so that we look down on the Earth’s orbit (and so the Earth 
is always the same distance from us).  Any space ship just outside the solar system could 
be maneuvered so these conditions would all be true: the astronauts aboard could fire 
their engines to rotate their ship until the relative motion of distant stars disappeared.  
Then, if the astronauts saw the Sun moving closer or further away, they could fire the 
engines to accelerate such that the ship stopped moving relative to the Sun.  (Assume you 
are far enough from the Sun that you can neglect its gravitational force on you.  Also, the 
distant stars will move relative to each other, but only very slowly, and so you can ignore 
the tiny change that occurs during 1 year).  This sidereal frame is important because the 
Earth’s rotation axis will always point in the same direction in this frame. (In the x,y,z 
frame this rotation axis changes,  sometimes pointing a bit towards x, sometimes a bit 
towards z, etc.) 
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Now, let q represent the angle of the Sun-to-Earth vector in our sidereal frame, so q 
increases by o360  in one year.  Suppose q=0 corresponds to the summer solstice, q= o90  
corresponds to the autumnal equinox, etc.  Also, let s denote the angle of the Earth’s 
rotation about its own axis as viewed from our sidereal frame.  Suppose we are in a city 
which experiences noon at s=0.  One day later, i.e. the next time we experience noon, the 
angle s will have increased by a little more than o360 , because q will have increased 
slightly during that time.  (It turns out that s increases by o360  every 0.99727  days.)   

 
Next, let t be the tilt of the earth’s rotation axis (i.e. the North Pole) relative to the ye  

direction: t has been measured to be o4.23 .  Finally, let l  represent the latitude of our 
city (or any point which is fixed with respect to the ground), with 0=l  corresponding to 
the equator and o90=l  corresponding to the North Pole.  Then if you think through the 
geometry, it turns out that the position vector ( )zyx ,,=r  of our city can be found by 

multiplying the ze  vector by four matrices and then by the radius of the Earth Er : 

( ) ( ) ( ) ( ) zxyxyE RsRtRqRr er     l−−=  ( 1 ) 

Here, ( )vRi  is the matrix for rotation by angle v  about the coordinate axis i.  The signs of 

the rotation have been chosen to match the Earth’s true motion if q and s are understood 
to increase in time.   
 
Next, rotate Figure 30 about the z axis until your city (i.e. the position vector r ) lies in 
the plane of the paper.  You can convince yourself that the shadow of a vertical object in 
the city will then lie in the plane of the paper as well: 
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Thus, the angle b that the shadow makes with respect to your local zenith (the “zenith” is 
the direction which appears vertical in your city) is the same as the angle b between the 
position vector r  and the unit vector that points towards the sun ze .  Since r  was 
constructed by applying (unitary) rotation matrices to a unit vector and then multiplying 
by the Earth radis Er , then the length of the vector r  is Er=r .  Consequently,  

brj E cos=  ( 2 ) 

It follows that the maximum and minimum shadow angles occur at the same time of day 
as the maxima and minima of j.  In the rest of this section I will use the word “extremum” 
to mean “either maximum or minimum.” 
 
We next need to compute j from ( 1 ): 
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( 3 ) 

To a good approximation, we can take q to be constant during the relatively rapid 
increase in s over a day, and so the condition of extremum shadow length is obtained by 
setting 
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( 4 ) 
  

We next want to express the value of the extremum shadow angle b as a function of q, t, 
and l  by eliminating s in ( 3 ).  As a first step we must recognize that there are two 
possible angles s that satisfy ( 4 ); these two angles differ by o180 .  (The fact that there 
are two solutions corresponds to the fact that each day the sun reaches both a maximum 
angle above the horizon and also a maximum angle below the horizon.)  I will name these 
two possible values 1s  and 2s .  To use ( 3 ) we will need to find cos s and sin s, and since 

there are two possible values for s, there are two possible values for its sine and cosine, 
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which differ by a minus sign.  Using the equations 2 2sin cos 1s s+ =  and 
tan sin / coss s s=  we find 

1 12 2

2 22 2

tan 1
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1 tan 1 tan
tan 1
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1 tan 1 tan

s
s s

s s
s

s s
s s

= + = +
+ +

= − = −
+ +

  

( 5 ) 

Substituting in ( 4 ) we obtain 

1 12 2 2 2

2 22 2 2 2

tan cos
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cos tan cos tan

tan cos
sin ,                cos

cos tan cos tan

q t
s s

t q t q

q t
s s

t q t q

= + = +
+ +

= − = −
+ +

 

( 6 ) 

(If you are worried about the signs, remember that cos t >0).  We then substitute these 
expressions into ( 3 ) and apply the formula for the extremum shadow angles ( 2 ).  The 
two solutions for s give two solutions for b: 

2

1 2 2 2 2

2

2 2 2 2 2
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q t q q
b q t

t q t q

  
 = + + 
 + +   

  
 = − + 
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( 7 ) 

After some algebra, these solutions can be written 

[ ]( )
[ ]( )

2 2 2
1

2 2 2
2

arccos cos  sin  sin cos cos  cos sin

arccos cos  sin  sin cos cos  cos sin

b q t t q q

b q t t q q

= + +

= − +
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( 8 ) 

(The two b’s in ( 8 ) may actually be swapped compared to the two b’s in ( 7 ) depending 
on the sign of cos q).  Introduce a new angle u defined by 

( )qtu cos  sinarcsin=  ( 9 ) 

with the usual choice of range for arcsin: oo 9090 <<− u .  Then it follows that 

2 2 2 2 2sin sin  cos ,        cos 1 sin  cos cos  cos sinu t q u t q t q q= = − = +  ( 10 ) 

and so our two solutions for the extremum angles can be written 
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u
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( 11 ) 



Now assume that neither you nor you collaborator are above the Arctic Circle or below 
the Antarctic Circle.  These circles are defined by the latitudes t−o90  and t+− o90  
respectively, so our assumption means that t−< o90l  and t+−> o90l .  From ( 9 ) it 
can be seen that tu ≤  and tu −≥ , and so u−< o90l  and u+−> o90l .  It follows that 

o
2 90>b , corresponding to the uninteresting case of an extremum during the night (when 

the Sun reaches its maximum angle below the horizon, which you can’t see).  Therefore 
the minimum shadow angle is given by 

ub −= l . ( 12 ) 

At the latitude u=l , observers will see shadows shrink to zero length during the day.  If 
you are north of this latitude, you will see shadows cast in a northerly direction, and if 
you are south of latitude u, shadows will point in a southerly direction. 
 

Finally, let ub yy −= l  represent the shadow angle measured by you, and let ub cc −= l  

represent the shadow angle measured by your collaborator.  There are four possible cases 
to consider: 
 
Case 1: Both you and your collaborator see shadows pointing north.  Therefore uy >l  

and uc >l .  Therefore ub yy −= l  and ub cc −= l .  Subtracting these last two equations, 

we obtain cycy bb −=− ll .  This means the difference in shadow angles is the difference 

in your latitudes. 
 
Case 2: Both you and your collaborator see shadows pointing south.  Therefore uy <l  

and uc <l .  Therefore ub yy +−= l  and ub cc +−= l .  Subtracting these last two 

equations, we obtain yccy bb −=− ll .  This means the difference in shadow angles is the 

difference in your latitudes. 
 
Case 3: You observe shadows pointing south whereas your collaborator sees shadows 
pointing north.  Therefore uy <l  and uc >l .  Therefore ub yy +−= l  and ub cc −= l .  

Adding these last two equations, we obtain cyyc bb +=− ll .  This means the difference 

in your latitudes is the sum of your shadow angles. 
 
Case 4: You observe shadows pointing north whereas your collaborator sees shadows 
pointing south.  Therefore uy >l  and uc <l .  Therefore ub yy −= l  and ub cc +−= l .  

Adding these last two equations, we obtain cycy bb +=− ll .  This means the difference 

in your latitudes is the sum of your shadow angles. 
 
Thus, we have proven our key result: if we measure the minimum shadow angles at two 
latitudes, and add or subtract these angles appropriately, we obtain precisely the 
difference in latitudes, regardless of which day of the year it is. 
 



Interestingly, on the days of the equinoxes ( o90q =  or o270q = ), u becomes 0, equation 

( 11 ) then reduces to l=b , and so you can measure your latitude directly by measuring 

the shadow angle. 
 

Appendix B: Useful numbers 
Tilt of Earth’s rotation axis relative to the plane of its orbit: o4.23=t  
 
Latitude l  of Lusaka = − 15.417 o  
Latitude l  of Livingstone =− 17.855o  
Latitude l  of Ndola = − 12.968o  
Latitude l  of Kitwe = − 12.807o  
Latitude l  of Nairobi = − 1.283o  
Latitude l  of Cape Town = − 33.917o  
Latitude l  of Johannesburg = − 26.167o  
 
Distance d: the north-south component of the distance between two cities: 

Between Lusaka & Livingstone: d = 271 km. 
Between Lusaka & Ndola: d = 272 km. 
Between Lusaka & Kitwe: d = 290 km. 
Between Lusaka & Nairobi: d = 1571 km. 
Between Lusaka & Cape Town: d = 2057 km. 
Between Lusaka & Johannesburg: d = 1195 km. 

 
Actual Earth radius = 6,370 km 


